|
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
[index]
Algebra::Polynomial.convert_to(ring)
-
Returns the ring converted to ring of
Algebra::MPolynomial.
Algebra::Polynomial#value_on(ring)
-
Returns the ring converted to ring of
Algebra::MPolynomial.
Example:
require "m-polynomial"
require "polynomial"
P = Algebra::Polynomial(Integer, "x", "y", "z")
x, y, z = P.vars
f = x**2 + y**2 + z**2 - x*y - y*z - z*x
MP = P.convert_to(Algebra::MPolynomial)
p f = f.value_on(MP) #=> z^2 - zy - zx + y^2 - yx + x^2
x, y, z = MP.vars
p f == x**2 + y**2 + z**2 - x*y - y*z - z*x #=> true
Algebra::MPolynomial.convert_to(ring)
-
Returns the ring converted to ring of
Algebra::Polynomial
Algebra::MPolynomial#value_on(ring)
-
Returns the ring converted to ring of
Algebra::Polynomial.
Example:
require "m-polynomial"
require "polynomial"
MP = Algebra::MPolynomial(Integer, "x", "y", "z")
x, y, z = MP.vars
f = x**2 + y**2 + z**2 - x*y - y*z - z*x
P = MP.convert_to(Algebra::Polynomial)
p f = f.value_on(P) #=> x^2 + (-y - z)x + y^2 - zy + z^2
x, y, z = P.vars
p f == x**2 + y**2 + z**2 - x*y - y*z - z*x #=> true
|