|
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
[index] ExerciseFinite SetsSets# sample-set01.rb require "algebra" #intersection p Set[0, 1, 2, 4] & Set[1, 3, 5] == Set[1] p Set[0, 1, 2, 4] & Set[7, 3, 5] == Set.phi #union p Set[0, 1, 2, 4] | Set[1, 3, 5] == Set[0, 1, 2, 3, 4, 5] #membership p Set[1, 3, 2].has? 1 #inclusion p Set[3, 2, 1, 3] < Set[3, 1, 4, 2, 0] Maps# sample-map01.rb require "algebra" a = Map[0=>2, 1=>2, 2=>0] b = Map[0=>1, 1=>1, 2=>1] p a * b #=> {0=>2, 1=>2, 2=>2} Groups# sample-group01.rb require "algebra" e = Permutation[0, 1, 2, 3, 4] a = Permutation[1, 0, 3, 4, 2] b = Permutation[0, 2, 1, 3, 4] p a * b #=> [2, 0, 3, 4, 1] g = Group.new(e, a, b) g.complete! p g == PermutationGroup.symmetric(5) #=> true Calculation of polynomials# sample-polynomial01.rb require "algebra" P = Polynomial.create(Integer, "x") x = P.var p((x + 1)**100) #=> x^100 + 100x^99 + ... + 100x + 1 Calculation of multi-variate polynomials# sample-polynomial02.rb require "algebra" P = Polynomial(Integer, "x", "y", "z") x, y, z = P.vars p((-x + y + z)*(x + y - z)*(x - y + z)) #=> -z^3 + (y + x)z^2 + (y^2 - 2xy + x^2)z - y^3 + xy^2 + x^2y - x^3 Calculation of multi-variate polynomials (2)# sample-m-polynomial01.rb require "algebra" P = MPolynomial(Integer) x, y, z, w = P.vars("xyz") p((-x + y + z)*(x + y - z)*(x - y + z)) #=> -x^3 + x^2y + x^2z + xy^2 - 2xyz + xz^2 - y^3 + y^2z + yz^2 - z^3 Remainder of the division of a polynomial by polynomials# sample-divmod01.rb require "algebra" P = MPolynomial(Rational) x, y, z = P.vars("xyz") f = x**2*y + x*y**2 + y*2 + z**3 g = x*y-z**3 h = y*2-6*z P.set_ord(:lex) # lex, grlex, grevlex puts "(#{f}).divmod([#{g}, #{h}]) =>", "#{f.divmod(g, h).inspect}" #=> (x^2y + xy^2 + 2y + z^3).divmod([xy - z^3, 2y - 6z]) => # [[x + y, 1/2z^3 + 1], xz^3 + 3z^4 + z^3 + 6z] # = [[Quotient1,Quotient2], Remainder] Groebner basis# sample-groebner01.rb require "algebra" P = MPolynomial(Rational, "xyz") x, y, z = P.vars("xyz") f1 = x**2 + y**2 + z**2 -1 f2 = x**2 + z**2 - y f3 = x - z p Groebner.basis([f1, f2, f3]) #=> [x - z, y - 2z^2, z^4 + 1/2z^2 - 1/4] Prime field# sample-primefield01.rb require "algebra" Z13 = ResidueClassRing(Integer, 13) a, b, c, d, e, f, g = Z13 p [e + c, e - c, e * c, e * 2001, 3 + c, 1/c, 1/c * c, d / d, b * 1 / b] #=> [6, 2, 8, 9, 5, 7, 1, 1, 1] p( (1...13).collect{|i| Z13[i]**12} ) #=> [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] Algebraic field# sample-algebraicfield01.rb require "algebra" Px = Polynomial(Rational, "x") x = Px.var F = ResidueClassRing(Px, x**2 + x + 1) x = F[x] p( (x + 1)**100 ) #=> -x - 1 p( (x-1)** 3 / (x**2 - 1) ) #=> -3x - 3 G = Polynomial(F, "y") y = G.var p( (x + y + 1)** 7 ) #=> y^7 + (7x + 7)y^6 + 8xy^5 + 4y^4 + (4x + 4)y^3 + 5xy^2 + 7y + x + 1 H = ResidueClassRing(G, y**5 + x*y + 1) y = H[y] p( 1/(x + y + 1)**7 ) #=> (1798/3x + 1825/9)y^4 + (-74x + 5176/9)y^3 + # (-6886/9x - 5917/9)y^2 + (1826/3x - 3101/9)y + 2146/9x + 4702/9 This can be done as following# sample-algebraicfield02.rb require "algebra" F = AlgebraicExtensionField(Rational, "x") {|x| x**2 + x + 1} x = F.var p( (x + 1)**100 ) p( (x-1)** 3 / (x**2 - 1) ) H = AlgebraicExtensionField(F, "y") {|y| y**5 + x*y + 1} y = H.var p( 1/(x + y + 1)**7 ) Quotient fieldsBy taking the quotient field of the ring of Integer, rational numbers are obtained.# sample-quotientfield01.rb require "algebra" Q = LocalizedRing(Integer) a = Q.new(3, 5) b = Q.new(5, 3) p [a + b, a - b, a * b, a / b, a + 3, 1 + a] #=> [34/15, -16/15, 15/15, 9/25, 18/5, 8/5] Rational function field# sample-quotientfield02.rb require "algebra" F13 = ResidueClassRing(Integer, 13) P = Polynomial(F13, "x") Q = LocalizedRing(P) x = Q[P.var] p ( 1 / (x**2 - 1) - 1 / (x**3 - 1) ) #This is equivalent to the following F = RationalFunctionField(F13, "x") x = F.var p ( 1 / (x**2 - 1) - 1 / (x**3 - 1) ) Rational function field over the algebraic extension field# sample-quotientfield03.rb require "algebra" F13 = ResidueClassRing(Integer, 13) F = AlgebraicExtensionField(F13, "a") {|a| a**2 - 2} a = F.var RF = RationalFunctionField(F, "x") x = RF.var p( (a/4*x + RF.unity/2)/(x**2 + a*x + 1) + (-a/4*x + RF.unity/2)/(x**2 - a*x + 1) ) #=> 1/(x**4 + 1) Algebraic function field# sample-quotientfield04.rb require "algebra" F13 = ResidueClassRing(Integer, 13) F = RationalFunctionField(F13, "x") x = F.var AF = AlgebraicExtensionField(F, "a") {|a| a**2 - 2*x} a = AF.var p( (a/4*x + AF.unity/2)/(x**2 + a*x + 1) + (-a/4*x + AF.unity/2)/(x**2 - a*x + 1) ) #=> (-x^3 + x^2 + 1)/(x^4 + 11x^3 + 2x^2 + 1) Linear AlgebraLinear equations# sample-gaussian-elimination01.rb require "algebra" M = MatrixAlgebra(Rational, 5, 4) a = M.matrix{|i, j| i + j} a.display #=> #[0, 1, 2, 3] #[1, 2, 3, 4] #[2, 3, 4, 5] #[3, 4, 5, 6] #[4, 5, 6, 7] a.kernel_basis.each do |v| puts "a * #{v} = #{a * v}" #=> a * [1, -2, 1, 0] = [0, 0, 0, 0, 0] #=> a * [2, -3, 0, 1] = [0, 0, 0, 0, 0] end Diagonalization of Square Matrix# sample-diagonalization01.rb require "algebra" class Rational# < Numeric def inspect; to_s; end end M = SquareMatrix(Rational, 3) a = M[[1,-1,-1], [-1,1,-1], [2,1,-1]] puts "A = "; a.display; puts #A = # 1, -1, -1 # -1, 1, -1 # 2, 1, -1 extfield, roots, tmatrix, evalues, addelms, evectors, espaces, chpoly, facts = a.diagonalize puts "Charactoristic Poly.: #{chpoly} => #{facts}" #Charactoristic Poly.: t^3 - t^2 + t - 6 => (t - 2)(t^2 + t + 3) puts "Algebraic Numbers:" roots.each do |po, rs| puts "#{rs.join(', ')} : roots of #{po} == 0" end puts #Algebraic Numbers: #a, -a - 1 : roots of t^2 + t + 3 == 0 puts "EigenSpaces: " evalues.uniq.each do |ev| puts "W_{#{ev}} = <#{espaces[ev].join(', ')}>" end puts #EigenSpaces: #W_{2} = <[4, -5, 1]> #W_{a} = <[1/3a + 1/3, 1/3a + 1/3, 1]> #W_{-a - 1} = <[-1/3a, -1/3a, 1]> puts "P = "; tmatrix.display; puts puts "P^-1 * A * P = "; (tmatrix.inverse * a * tmatrix).display; puts #P = # 4, 1/3a + 1/3, -1/3a # -5, 1/3a + 1/3, -1/3a # 1, 1, 1 # #P^-1 * A * P = # 2, 0, 0 # 0, a, 0 # 0, 0, -a - 1 Elementary Divisors of Matrix# sample-elementary-divisor01.rb require "algebra" M = SquareMatrix(Rational, 4) a = M[ [2, 0, 0, 0], [0, 2, 0, 0], [0, 0, 2, 0], [5, 0, 0, 2] ] P = Polynomial(Rational, "x") MP = SquareMatrix(P, 4) ac = a.char_matrix(MP) ac.display; puts #=> #x - 2, 0, 0, 0 # 0, x - 2, 0, 0 # 0, 0, x - 2, 0 # -5, 0, 0, x - 2 p ac.elementary_divisor #=> [1, x - 2, x - 2, x^2 - 4x + 4] require "matrix-algebra-triplet" at = ac.to_triplet.e_diagonalize at.body.display; puts #=> # 1, 0, 0, 0 # 0, x - 2, 0, 0 # 0, 0, x - 2, 0 # 0, 0, 0, x^2 - 4x + 4 at.left.display; puts #=> # 0, 0, 0, -1/5 # 0, 1, 0, 0 # 0, 0, 1, 0 # 5, 0, 0, x - 2 at.right.display; puts #=> # 1, 0, 0, 1/5x - 2/5 # 0, 1, 0, 0 # 0, 0, 1, 0 # 0, 0, 0, 1 p at.left * ac * at.right == at.body #=> true Jordan Canonical Form of Matrix# sample-jordan-form01.rb require "algebra" M4 = SquareMatrix(Rational, 4) m = M4[ [-1, 1, 2, -1], [-5, 3, 4, -2], [3, -1, 0, 1], [5, -2, -2, 3] ] m.jordan_form.display; #=> # 2, 0, 0, 0 # 0, 1, 1, 0 # 0, 0, 1, 1 # 0, 0, 0, 1 puts #----------------------------------- m = M4[ [3, 1, -1, 1], [-3, -1, 3, -1], [-2, -2, 0, 0], [0, 0, -4, 2] ] jf, pt, qt, field, modulus = m.jordan_form_info p modulus #=> [a^2 + 4] jf.display; puts #=> # 2, 1, 0, 0 # 0, 2, 0, 0 # 0, 0, a, 0 # 0, 0, 0, -a m = m.convert_to(jf.type) p jf == pt * m * qt #=> true #----------------------------------- m = M4[ [-1, 1, 2, -1], [-5, 3, 4, -2], [3, -1, 0, 1], [5, -2, -2, 0] ] jf, pt, qt, field, modulus = m.jordan_form_info p modulus #=> [a^3 + 3a - 1, b^2 + ab + a^2 + 3] jf.display; puts #=> # 2, 0, 0, 0 # 0, a, 0, 0 # 0, 0, b, 0 # 0, 0, 0, -b - a m = m.convert_to(jf.type) p jf == pt * m * qt #=> true The proofs of the theorem of Cayley-Hamilton# sample-cayleyhamilton01.rb require "algebra" n = 4 R = MPolynomial(Integer) MR = SquareMatrix(R, n) m = MR.matrix{|i, j| R.var("x#{i}#{j}") } Rx = Polynomial(R, "x") ch = m.char_polynomial(Rx) p ch.evaluate(m) #=> 0 The expression of Groebner basis by original generators# sample-groebner02.rb require "algebra" P = MPolynomial(Rational) x, y, z = P.vars "xyz" f1 = x**2 + y**2 + z**2 -1 f2 = x**2 + z**2 - y f3 = x - z coeff, basis = Groebner.basis_coeff([f1, f2, f3]) basis.each_with_index do |b, i| p [coeff[i].inner_product([f1, f2, f3]), b] p coeff[i].inner_product([f1, f2, f3]) == b #=> true end The quotients and the remainder by arbitrary basis# sample-groebner03.rb require "algebra" F5 = ResidueClassRing(Integer, 2) F = AlgebraicExtensionField(F5, "a") {|a| a**3 + a + 1} a = F.var P = MPolynomial(F) x, y, z = P.vars("xyz") f1 = x + y**2 + z**2 - 1 f2 = x**2 + z**2 - y * a f3 = x - z - a f = x**3 + y**3 + z**3 q, r = f.divmod_s(f1, f2, f3) p f == q.inner_product([f1, f2, f3]) + r #=> true FactorizationFactorization of Integer coefficient polynomial# sample-factorize01.rb require "algebra" P = Polynomial(Integer, "x") x = P.var f = 8*x**7 - 20*x**6 + 6*x**5 - 11*x**4 + 44*x**3 - 9*x**2 - 27 p f.factorize #=> (2x - 3)^3(x^2 + x + 1)^2 Factorization of Zp coefficient polynomial# sample-factorize02.rb require "algebra" Z7 = ResidueClassRing(Integer, 7) P = Polynomial(Z7, "x") x = P.var f = 8*x**7 - 20*x**6 + 6*x**5 - 11*x**4 + 44*x**3 - 9*x**2 - 27 p f.factorize #=> (x + 5)^2(x + 3)^2(x + 2)^3 Factorization of the algebraic extension of Rational polynomial# sample-factorize03.rb require "algebra" A = AlgebraicExtensionField(Rational, "a") {|a| a**2 + a + 1} a = A.var P = Polynomial(A, "x") x = P.var f = x**4 + (2*a + 1)*x**3 + 3*a*x**2 + (-3*a - 5)*x - a + 1 p f.factorize #=> (x + a)^3(x - a + 1) Factorization of the algebraic extension of the algebraic extension of Rational# sample-factorize04.rb require "algebra" A = AlgebraicExtensionField(Rational, "a") {|a| a**2 - 2} B = AlgebraicExtensionField(A, "b"){|b| b**2 + 1} P = Polynomial(B, "x") x = P.var f = x**4 + 1 p f.factorize #=> (x - 1/2ab - 1/2a)(x + 1/2ab - 1/2a)(x + 1/2ab + 1/2a)(x - 1/2ab + 1/2a) Factorization of x^4 + 10x^2 + 1# sample-factorize05.rb require "algebra" def show(f, mod = 0) if mod > 0 zp = ResidueClassRing(Integer, mod) pzp = Polynomial(zp, f.variable) f = f.convert_to(pzp) end fact = f.factorize printf "mod %2d: %-15s => %s\n", mod, f, fact end Px = Polynomial(Integer, "x") x = Px.var f = x**4 + 10*x**2 + 1 #f = x**4 - 10*x**2 + 1 show(f) Primes.new.each do |mod| break if mod > 100 show(f, mod) end #mod 0: x^4 + 10x^2 + 1 => x^4 + 10x^2 + 1 #mod 2: x^4 + 1 => (x + 1)^4 #mod 3: x^4 + x^2 + 1 => (x + 2)^2(x + 1)^2 #mod 5: x^4 + 1 => (x^2 + 3)(x^2 + 2) #mod 7: x^4 + 3x^2 + 1 => (x^2 + 4x + 6)(x^2 + 3x + 6) #mod 11: x^4 - x^2 + 1 => (x^2 + 5x + 1)(x^2 + 6x + 1) #mod 13: x^4 + 10x^2 + 1 => (x^2 - x + 12)(x^2 + x + 12) #mod 17: x^4 + 10x^2 + 1 => (x^2 + 3x + 1)(x^2 + 14x + 1) #mod 19: x^4 + 10x^2 + 1 => (x + 17)(x + 10)(x + 9)(x + 2) #mod 23: x^4 + 10x^2 + 1 => (x^2 + 6)(x^2 + 4) #mod 29: x^4 + 10x^2 + 1 => (x^2 + 21)(x^2 + 18) #mod 31: x^4 + 10x^2 + 1 => (x^2 + 22x + 30)(x^2 + 9x + 30) #mod 37: x^4 + 10x^2 + 1 => (x^2 + 32x + 36)(x^2 + 5x + 36) #mod 41: x^4 + 10x^2 + 1 => (x^2 + 19x + 1)(x^2 + 22x + 1) #mod 43: x^4 + 10x^2 + 1 => (x + 40)(x + 29)(x + 14)(x + 3) #mod 47: x^4 + 10x^2 + 1 => (x^2 + 32)(x^2 + 25) #mod 53: x^4 + 10x^2 + 1 => (x^2 + 41)(x^2 + 22) #mod 59: x^4 + 10x^2 + 1 => (x^2 + 13x + 1)(x^2 + 46x + 1) #mod 61: x^4 + 10x^2 + 1 => (x^2 + 54x + 60)(x^2 + 7x + 60) #mod 67: x^4 + 10x^2 + 1 => (x + 55)(x + 39)(x + 28)(x + 12) #mod 71: x^4 + 10x^2 + 1 => (x^2 + 43)(x^2 + 38) #mod 73: x^4 + 10x^2 + 1 => (x + 68)(x + 44)(x + 29)(x + 5) #mod 79: x^4 + 10x^2 + 1 => (x^2 + 64x + 78)(x^2 + 15x + 78) #mod 83: x^4 + 10x^2 + 1 => (x^2 + 18x + 1)(x^2 + 65x + 1) #mod 89: x^4 + 10x^2 + 1 => (x^2 + 9x + 1)(x^2 + 80x + 1) #mod 97: x^4 + 10x^2 + 1 => (x + 88)(x + 54)(x + 43)(x + 9) Factorization of Integer or Rational coefficient multi-variate polynomial# sample-m-factorize01.rb require "algebra" P = MPolynomial(Integer) x, y, z = P.vars("xyz") f = x**3 + y**3 + z**3 - 3*x*y*z p f.factorize #=> (x + y + z)(x^2 - xy - xz + y^2 - yz + z^2) PQ = MPolynomial(Rational) x, y, z = PQ.vars("xyz") f = x**3 + y**3/8 + z**3 - 3*x*y*z/2 p f.factorize #=> (1/8)(2x + y + 2z)(4x^2 - 2xy - 4xz + y^2 - 2yz + 4z^2) Factorization of Zp coefficient multi-variate polynomial# sample-m-factorize02.rb require "algebra" Z7 = ResidueClassRing(Integer, 7) P = MPolynomial(Z7) x, y, z = P.vars("xyz") f = x**3 + y**3 + z**3 - 3*x*y*z p f.factorize #=> (x + 4y + 2z)(x + 2y + 4z)(x + y + z) Algebraic EquationsMinimal Polynomial# sample-algebraic-equation01.rb require "algebra" PQ = MPolynomial(Rational) a, b, c = PQ.vars("abc") p AlgebraicEquation.minimal_polynomial(a + b + c, a**2-2, b**2-3, c**2-5) #=> x^8 - 40x^6 + 352x^4 - 960x^2 + 576 Minimal Splitting Field# sample-splitting-field01.rb require "algebra" PQ = Polynomial(Rational, "x") x = PQ.var f = x**4 + 2 p f #=> x^4 + 2 field, modulus, facts = f.decompose p modulus #=> [a^4 + 2, b^2 + a^2] p facts #=> (x - a)(x + a)(x - b)(x + b) fp = Polynomial(field, "x") x = fp.var facts = Factors.new(facts.collect{|g, n| [g.evaluate(x), n]}) p facts.pi == f.convert_to(fp) #=> true Galois Group of polynomials# sample-galois-group01.rb require "rational" require "polynomial" P = Algebra.Polynomial(Rational, "x") x = P.var (x**3 - 3*x + 1).galois_group.each do |g| p g end #=> [0, 1, 2] # [1, 2, 0] # [2, 0, 1]] (x**3 - x + 1).galois_group.each do |g| p g end #=> [0, 1, 2] # [1, 0, 2] # [2, 0, 1] # [0, 2, 1] # [1, 2, 0] # [2, 1, 0] |